右键网页检查

右键网页检查

搜索页面和这个相关的从而定位到引入文件

定位到引入文件

查找,一眼Base64编码的字体文件,通过这个编码数据解码获得原字体文件

Base64编码的字体文件

找到之后进去查看

查看

找到了,把里面内容复制下来,掐头去尾,是这样的数据

base64编码

编写脚本进行解码,引号内填写base64编码数据去掉data:application/font-ttf;charset=utf-8;base64,的开头声明"

进行解码

import base64

# Base64编码的字符串
base64_string = "这里填写base64编码数据去掉data:application/font-ttf;charset=utf-8;base64,的开头声明"
# 解码Base64字符串
decoded_data = base64.b64decode(base64_string)

# 保存为.ttf文件
with open("chaoxing_font.ttf", "wb") as f:
    f.write(decoded_data)

获得到base64的ttf文件结果

获得到base64的ttf文件结果

使用字体查看器查看字体 https://www.bejson.com/ui/font/

查看字体

接下来将ttf文件转换成xml文件(python需要安装fontTools)

from fontTools.ttLib import TTFont

# TTF 文件路径
ttf_path = r"D:\UserData\Desktop\chaoxing_font.ttf"
xml_output_path = r"D:\UserData\Desktop\chaoxing_font.xml"
# 加载字体文件
font = TTFont(ttf_path)
# 保存为 XML 文件
font.saveXML(xml_output_path)
print(f"解析完毕")

抽选字体对比一下映射结果对不对(超星的加密是修改了此字体图元数据,显示成未加密的字)

抽选字体

下载原来的字体文件(非超星加密后的文件)

源字体文件对应

源字体文件对应

超星加密后字体

超星加密后字体

也就是说原来的5148对应着57C3

对应

编写对比代码进行测试

import xml.etree.ElementTree as ET
import hashlib
import json


def parse_glyphs(file_path):
    """
    解析字体文件中的 TTGlyph 信息
    """
    tree = ET.parse(file_path)
    root = tree.getroot()

    glyphs = {}

    for glyph in root.findall(".//TTGlyph"):
        name = glyph.get("name")
        points = []
        for pt in glyph.findall(".//pt"):
            x = pt.get("x")
            y = pt.get("y")
            on = pt.get("on")
            points.append(f"{x}{y}{on}")

        # 生成轮廓的唯一哈希值
        hash_value = hashlib.md5("".join(points).encode('utf-8')).hexdigest()

        # 截取哈希值的 25-32 位来作为唯一标识
        truncated_hash = hash_value[24:32]

        glyphs[truncated_hash] = name  # 使用截取后的哈希值作为键

    return glyphs


def get_unicode_character(name):
    """
    根据 glyph 名称(如 uni5148)获取对应汉字
    """
    if name.startswith("uni"):
        try:
            unicode_value = int(name[3:], 16)
            return chr(unicode_value)
        except ValueError:
            return None
    return None


def build_mapping(xml_old_path, xml_cx_path):
    """
    建立思源黑体和超星字体的对照关系
    """
    old_glyphs = parse_glyphs(xml_old_path)
    print(len(old_glyphs))
    cx_glyphs = parse_glyphs(xml_cx_path)
    print(len(cx_glyphs))

    mapping = []

    for cx_hash, cx_name in cx_glyphs.items():
        if cx_hash in old_glyphs:
            old_name = old_glyphs[cx_hash]
            character = get_unicode_character(old_name)
            if character:  # 确保是有效汉字
                mapping.append({
                    "chaoxing": cx_name,
                    "si_yuan": {
                        "siyuan_name": old_name,
                        "siyuan_name_value": character
                    }
                })

    return mapping


if __name__ == "__main__":
    xml_old_path = r"D:\UserData\Desktop\思源黑体.xml"
    xml_cx_path = r"D:\UserData\Desktop\chaoxing_font.xml"

    result = build_mapping(xml_old_path, xml_cx_path)

    # 输出到文件
    with open("glyph_mapping.json", "w", encoding="utf-8") as f:
        json.dump(result, f, ensure_ascii=False, indent=4)

    # 打印部分结果
    # print(json.dumps(result[:5], ensure_ascii=False, indent=4))

生成结果

[
    {
        "chaoxing": "uni57C2",
        "si_yuan": {
            "siyuan_name": "uni2FAF",
            "siyuan_name_value": "⾯"
        }
    },
    {
        "chaoxing": "uni57E0",
        "si_yuan": {
            "siyuan_name": "uni5584",
            "siyuan_name_value": "善"
        }
    },
    {
        "chaoxing": "uni580F",
        "si_yuan": {
            "siyuan_name": "uni4E16",
            "siyuan_name_value": "世"
        }
    },
    {
        "chaoxing": "uni581D",
        "si_yuan": {
            "siyuan_name": "uni5BB3",
            "siyuan_name_value": "害"
        }
    },
    {
        "chaoxing": "uni900B",
        "si_yuan": {
            "siyuan_name": "uni2F83",
            "siyuan_name_value": "⾃"
        }
    }
]

我采用的字符串是

超星:下埂关于“好好埃生”的埄埆哪埇不埁准埅?

思源:下面关于“好好先生”的描述哪项不太准确?

结合对照表显示,发现字体字形数据并对不上,查看字体数据,针对“下“字进行分析,发现两边结果并对不上,结果是超星对于字体字形进行了更改,并不是简单的对比字符哈希值就可以对比出来的了。

对比效果1

查看对比效果

对比效果2

左侧为原版字体,右侧为学习通字体

对比效果3

百度到” I Am I“大佬的文章”从学习通复制文字乱码看前端版权保护“找到一定的思路是假设字符的边距是唯一的,好的,那么我们就拼接边距距离。得出以下代码

import xml.etree.ElementTree as ET
import hashlib
import json


def parse_glyphs(file_path):
    """
    解析字体文件中的 TTGlyph 信息,使用 xMin, yMin, xMax, yMax 作为唯一标识
    """
    tree = ET.parse(file_path)
    root = tree.getroot()

    glyphs = {}

    for glyph in root.findall(".//TTGlyph"):
        name = glyph.get("name")

        # 获取 xMin, yMin, xMax, yMax
        xMin = glyph.get("xMin")
        yMin = glyph.get("yMin")
        xMax = glyph.get("xMax")
        yMax = glyph.get("yMax")

        # 使用这四个值拼接成唯一标识符
        if xMin and yMin and xMax and yMax:
            unique_key = f"{xMin}{yMin}{xMax}{yMax}"
            glyphs[unique_key] = name  # 用四个边界值作为唯一键,值为glyph名称

    return glyphs
# def parse_glyphs(file_path):
#     """
#     解析字体文件中的 TTGlyph 信息
#     """
#     tree = ET.parse(file_path)
#     root = tree.getroot()
#
#     glyphs = {}
#
#     for glyph in root.findall(".//TTGlyph"):
#         name = glyph.get("name")
#         points = []
#         for pt in glyph.findall(".//pt"):
#             x = pt.get("x")
#             y = pt.get("y")
#             on = pt.get("on")
#             points.append(f"{x}{y}{on}")
#
#         # 生成轮廓的唯一哈希值
#         hash_value = hashlib.md5("".join(points).encode('utf-8')).hexdigest()
#         glyphs[hash_value] = name  # 哈希值对应 glyph 名称
#
#     return glyphs


def get_unicode_character(name):
    """
    根据 glyph 名称(如 uni5148)获取对应汉字
    """
    if name.startswith("uni"):
        try:
            unicode_value = int(name[3:], 16)
            return chr(unicode_value)
        except ValueError:
            return None
    return None


def build_mapping(xml_old_path, xml_cx_path):
    """
    建立思源黑体和超星字体的对照关系
    """
    old_glyphs = parse_glyphs(xml_old_path)
    # print(len(old_glyphs))
    cx_glyphs = parse_glyphs(xml_cx_path)
    # print(len(cx_glyphs))
    # print(cx_glyphs)
    mapping = []

    for cx_hash, cx_name in cx_glyphs.items():

        if cx_hash in old_glyphs:
            old_name = old_glyphs[cx_hash]
            character = get_unicode_character(old_name)
            if cx_name == 'uni5814':
                print(cx_hash)
                print(old_name)

            if character:  # 确保是有效汉字
                mapping.append({
                    "chaoxing": cx_name,
                    "si_yuan" : {
                        "siyuan_name": old_name,
                        "siyuan_name_value": character
                    }
                })

    return mapping


if __name__ == "__main__":
    xml_old_path = r"D:\UserData\Desktop\思源黑体.xml"
    xml_cx_path = r"D:\UserData\Desktop\chaoxing_font.xml"

    result = build_mapping(xml_old_path, xml_cx_path)

    # 输出到文件
    with open("glyph_mapping.json", "w", encoding="utf-8") as f:
        json.dump(result, f, ensure_ascii=False, indent=4)

    # 打印部分结果
    # print(json.dumps(result[:5], ensure_ascii=False, indent=4))

再通过匹配结果进行查看数据

import json

# 读取json
def load_mapping(file_path):
    with open(file_path, "r", encoding="utf-8") as f:
        return json.load(f)

# 获取字符对应的 uni 名称
def get_uni_name(character, mapping):
    unicode_name = f"uni{ord(character):X}"
    # print(unicode_name)
    for entry in mapping:
        if entry["chaoxing"] == unicode_name:
            return entry
    return None

# 解析字符串
def parse_code(code, mapping):
    result = []
    for char in code:
        mapping_entry = get_uni_name(char, mapping)
        if mapping_entry:
            result.append({
                "char": char,
                "message": mapping_entry["si_yuan"]['siyuan_name_value']
            })
        else:
            result.append({
                "char": char,
                "message": char
            })
    return result

# 测试代码
if __name__ == "__main__":
    # 读取字形映射
    glyph_mapping_file = "glyph_mapping.json"
    mapping = load_mapping(glyph_mapping_file)
    # 示例字符串
    code = '下埂关于“好好埃生”的埄埆哪埇不埁准埅?'
    # 解析字符串
    parsed_result = parse_code(code, mapping)
    # 输出解析结果
    # for item in parsed_result:
    #     print(item)
    print(f'超星字体:{code}')
    siyuan_font = ''.join([item['message'] for item in parsed_result])
    print(f'思源字体:{siyuan_font}')

得出结果

超星字体:下埂关于“好好埃生”的埄埆哪埇不埁准埅?
思源字体:下⾯关于“好好先生”的描述哪项不太准确?

在大佬的测试中,是可以确定90%左右的字符数据的。如果您不想看了,到这里就可以了,基本满足所有的效果了。

然后由于最近领导给我一些任务就是比较两个字符串的相似度,通过这个启发就想通过xy向量计算字符字形的相似度。得出以下代码,首先针对”下”字进行数据测试

  1. 归一化:将所有点归一化到相同的尺度。(如果不归一,DTW有要求长度一样,会报错)

    归一化点集(Normalization of points)是指将原始点集中的每个点的坐标变换到一个特定的标准范围,以消除由于坐标范围不同而引起的差异,从而使得数据的比较更加公正和一致。具体而言,在这段代码中,归一化的目标是将每个点的坐标缩放到 [0, 1] 的范围内。

    为什么要进行归一化?

    在计算点集之间的相似度时(如使用动态时间规整 DTW),不同的点集可能有不同的坐标范围或单位。如果不进行归一化,可能会因为坐标差异较大,导致计算出的相似度偏差较大。归一化的过程能够消除这种影响,让两个点集具有相同的尺度,从而公平地比较它们之间的相似性。

    举个例子:

    假设有一个点集:

    points = [(10, 20), (30, 40), (50, 60), (70, 80)]

    经过归一化处理后:

    • 最小值:min_x = 10, min_y = 20
    • 最大值:max_x = 70, max_y = 80

    每个点将会变成:

    • (10, 20) 变成 (0, 0)
    • (30, 40) 变成 (0.333, 0.333)
    • (50, 60) 变成 (0.666, 0.666)
    • (70, 80) 变成 (1, 1)

    最终,这些点就会被归一化到 [0, 1] 的范围内,这样它们的尺度是一致的,适合用于后续的相似度计算。归一化的目的是消除不同点集之间的坐标尺度差异,使得不同的点集可以在相同的尺度下进行比较。通过这种方式,我们可以更加公平地计算它们之间的相似度,而不会因为坐标的差异导致错误的比较结果。

  2. 使用DTW进行点对齐:保持原有的DTW对齐方法。

    这里计算两个点集的相似度分数,通过DTW距离计算得出一个0~1的相似度分数。1完全相似,0完全不一样。

    函数使用 fastdtw 函数计算归一化后的两个点集之间的 DTW 距离。DTW 是一种衡量两组时间序列相似度的算法,常用于处理不等长、速度不同的序列数据。在这里,它也可以用于比较两个二维点集的相似度。

  3. 计算相似度:基于对齐后的点集计算相似度。
import numpy as np
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean

# 假设我们已经有了两个字形的数据
ttglyph_superstar = [
    (515, 695), (515, 517), (526, 530), (749, 421), (884, 320),
    (838, 259), (731, 347), (515, 461), (515, -72), (445, -72),
    (445, 695), (59, 695), (59, 762), (942, 762), (942, 695)
]

ttglyph_sourcehan = [
    (515, 695), (515, 517), (526, 530), (618, 485), (720, 426),
    (825, 364), (884, 320), (838, 259), (788, 300), (694, 359),
    (606, 413), (515, 461), (515, -72), (445, -72), (445, 695),
    (59, 695), (59, 762), (942, 762), (942, 695)
]

# 转换为numpy数组
points1 = np.array(ttglyph_superstar)
points2 = np.array(ttglyph_sourcehan)

def normalize_points(points):
    """
    归一化点集
    """
    if len(points) == 0:  # 检查点集是否为空
        return []

    points = np.array(points)  # 将点集转换为NumPy数组
    min_x, min_y = np.min(points, axis=0)
    max_x, max_y = np.max(points, axis=0)

    # 防止除以零
    if max_x == min_x:
        max_x = min_x + 1
    if max_y == min_y:
        max_y = min_y + 1

    normalized_points = (points - [min_x, min_y]) / [max_x - min_x, max_y - min_y]
    return normalized_points

def calculate_similarity(points1, points2):
    """
    使用DTW计算两个点集之间的相似度
    """
    points1_normalized = normalize_points(points1)
    points2_normalized = normalize_points(points2)

    if len(points1_normalized) == 0 or len(points2_normalized) == 0:
        return 0.0  # 如果任一点集为空,相似度为0
    #distance 是 DTW 算法计算出来的总距离,表示两个点集的整体差异。
    #path 是 DTW 算法找到的最佳对齐路径,指示了如何从 points1 映射到 points2。
    distance, path = fastdtw(points1_normalized, points2_normalized, dist=euclidean)
    # DTW 算法会计算出一组“对齐”路径,通过这个路径可以重新排列两个点集,使它们更好地对齐。根据 path 的内容,分别从 points1_normalized 和 points2_normalized 中提取对齐后的点集。
    aligned_points1 = [points1_normalized[i] for i, _ in path]
    aligned_points2 = [points2_normalized[j] for _, j in path]
    # 计算对齐点之间的欧几里得距离,在最佳对齐下,每对点之间的差异。np.linalg.norm 计算的是两点之间的欧几里得距离
    distances = [np.linalg.norm(np.array(p1) - np.array(p2)) for p1, p2 in zip(aligned_points1, aligned_points2)]
    # 算出所有欧氏距离去平局书,得出平均欧氏距距离
    average_distance = np.mean(distances)

    similarity_score = 1 / (1 + average_distance)
    return similarity_score


print(f"Similarity score: {calculate_similarity(points2,points1)}")

得出结果

Similarity score: 0.975700703557036

发现相似度还是很高的,这里是需要忽略字体的风格的,和笔画的这些。

好的,可以通过这种相似度算法去核对超星字体对应的元数据了。

import xml.etree.ElementTree as ET
import json
import numpy as np
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
from tqdm import tqdm

def parse_glyphs(file_path):
    """
    解析字体文件中的 TTGlyph 信息
    """
    tree = ET.parse(file_path)
    root = tree.getroot()

    glyphs = {}

    for glyph in root.findall(".//TTGlyph"):
        name = glyph.get("name")
        points = []
        for pt in glyph.findall(".//pt"):
            x = int(pt.get("x"))
            y = int(pt.get("y"))
            on = int(pt.get("on", 0))  # 默认值为0,如果不存在则设为0
            points.append((x, y))

        # 将点集转换为字符串,作为字典的键
        key = str(points)
        glyphs[key] = name

    return glyphs

def get_unicode_character(name):
    """
    根据 glyph 名称(如 uni5148)获取对应汉字
    """
    if name.startswith("uni"):
        try:
            unicode_value = int(name[3:], 16)
            return chr(unicode_value)
        except ValueError:
            return None
    return None

def normalize_points(points):
    """
    归一化点集
    """
    if not points:  # 检查点集是否为空
        return []

    points = np.array(points)  # 将点集转换为NumPy数组
    min_x, min_y = np.min(points, axis=0)
    max_x, max_y = np.max(points, axis=0)

    # 防止除以零
    if max_x == min_x:
        max_x = min_x + 1
    if max_y == min_y:
        max_y = min_y + 1

    normalized_points = (points - [min_x, min_y]) / [max_x - min_x, max_y - min_y]
    return normalized_points

def calculate_similarity(points1, points2):
    """
    使用DTW计算两个点集之间的相似度
    """
    points1_normalized = normalize_points(points1)
    points2_normalized = normalize_points(points2)

    if len(points1_normalized) == 0 or len(points2_normalized) == 0:
        return 0.0  # 如果任一点集为空,相似度为0

    distance, path = fastdtw(points1_normalized, points2_normalized, dist=euclidean)

    aligned_points1 = [points1_normalized[i] for i, _ in path]
    aligned_points2 = [points2_normalized[j] for _, j in path]

    distances = [np.linalg.norm(np.array(p1) - np.array(p2)) for p1, p2 in zip(aligned_points1, aligned_points2)]
    average_distance = np.mean(distances)

    similarity_score = 1 / (1 + average_distance)
    return similarity_score

def build_mapping(xml_old_path, xml_cx_path):
    """
    建立思源黑体和超星字体的对照关系
    """
    old_glyphs = parse_glyphs(xml_old_path)
    print(f'思源字体:{len(old_glyphs)}')
    cx_glyphs = parse_glyphs(xml_cx_path)
    print(f'超星字体:{len(cx_glyphs)}')

    mapping = []

    total_combinations = len(old_glyphs) * len(cx_glyphs)
    with tqdm(total=total_combinations, desc="Processing") as pbar:
        for old_key, old_name in old_glyphs.items():
            for cx_key, cx_name in cx_glyphs.items():
                similarity = calculate_similarity(eval(old_key), eval(cx_key))
                if similarity >= 0.9:
                    mapping.append({
                        "chaoxing": {
                            "cx_name": cx_name,
                            "cx_character": get_unicode_character(cx_name)
                        },
                        "si_yuan": {
                            "sy_name": old_name,
                            "sy_character": get_unicode_character(old_name)
                        },
                        "similarity": similarity
                    })
                pbar.update(1)

    return mapping

if __name__ == "__main__":
    xml_old_path = r"D:\UserData\Desktop\思源黑体.xml"
    xml_cx_path = r"D:\UserData\Desktop\chaoxing_font.xml"

    result = build_mapping(xml_old_path, xml_cx_path)

    # 输出到文件
    with open("glyph_mapping2.json", "w", encoding="utf-8") as f:
        json.dump(result, f, ensure_ascii=False, indent=4)
        
    # print(json.dumps(result[:5], ensure_ascii=False, indent=4))

但是运行效果不如人意

运行效果

这么长的时间肯定是不能忍的,所有采用多线程的处理方式,cpu就应该忙起来了。

from concurrent.futures import ProcessPoolExecutor, as_completed
import json
import numpy as np
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
from tqdm import tqdm
import xml.etree.ElementTree as ET

# 其他函数不变,保持之前的代码
def calculate_similarity(points1, points2):
    """
    使用DTW计算两个点集之间的相似度
    """
    points1_normalized = normalize_points(points1)
    points2_normalized = normalize_points(points2)

    if len(points1_normalized) == 0 or len(points2_normalized) == 0:
        return 0.0  # 如果任一点集为空,相似度为0

    distance, path = fastdtw(points1_normalized, points2_normalized, dist=euclidean)

    aligned_points1 = [points1_normalized[i] for i, _ in path]
    aligned_points2 = [points2_normalized[j] for _, j in path]

    distances = [np.linalg.norm(np.array(p1) - np.array(p2)) for p1, p2 in zip(aligned_points1, aligned_points2)]
    average_distance = np.mean(distances)

    similarity_score = 1 / (1 + average_distance)
    return similarity_score

def normalize_points(points):
    """
    归一化点集
    """
    if not points:  # 检查点集是否为空
        return []

    points = np.array(points)  # 将点集转换为NumPy数组
    min_x, min_y = np.min(points, axis=0)
    max_x, max_y = np.max(points, axis=0)

    # 防止除以零
    if max_x == min_x:
        max_x = min_x + 1
    if max_y == min_y:
        max_y = min_y + 1

    normalized_points = (points - [min_x, min_y]) / [max_x - min_x, max_y - min_y]
    return normalized_points

def parallel_calculate_similarity(old_key, old_name, cx_glyphs):
    """
    并行计算相似度
    """
    results = []
    for cx_key, cx_name in cx_glyphs.items():
        similarity = calculate_similarity(eval(old_key), eval(cx_key))
        if similarity >= 0.9:
            results.append({
                "chaoxing": {
                    "cx_name": cx_name,
                    "cx_character": get_unicode_character(cx_name)
                },
                "si_yuan": {
                    "sy_name": old_name,
                    "sy_character": get_unicode_character(old_name)
                },
                "similarity": similarity
            })
    return results

def get_unicode_character(name):
    """
    根据 glyph 名称(如 uni5148)获取对应汉字
    """
    if name.startswith("uni"):
        try:
            unicode_value = int(name[3:], 16)
            return chr(unicode_value)
        except ValueError:
            return None
    return None

def parse_glyphs(file_path):
    """
    解析字体文件中的 TTGlyph 信息
    """
    tree = ET.parse(file_path)
    root = tree.getroot()

    glyphs = {}

    for glyph in root.findall(".//TTGlyph"):
        name = glyph.get("name")
        points = []
        for pt in glyph.findall(".//pt"):
            x = int(pt.get("x"))
            y = int(pt.get("y"))
            on = int(pt.get("on", 0))  # 默认值为0,如果不存在则设为0
            points.append((x, y))

        # 将点集转换为字符串,作为字典的键
        key = str(points)
        glyphs[key] = name

    return glyphs


def build_mapping_parallel(xml_old_path, xml_cx_path):
    """
    并行建立思源黑体和超星字体的对照关系
    """
    old_glyphs = parse_glyphs(xml_old_path)
    print(f'思源字体:{len(old_glyphs)}')
    cx_glyphs = parse_glyphs(xml_cx_path)
    print(f'超星字体:{len(cx_glyphs)}')

    mapping = []

    # 使用进程池进行并行处理
    with ProcessPoolExecutor() as executor:
        futures = []
        # 为每个思源字体字形提交任务
        for old_key, old_name in old_glyphs.items():
            futures.append(executor.submit(parallel_calculate_similarity, old_key, old_name, cx_glyphs))

        # 通过 as_completed 获取计算结果
        for future in tqdm(as_completed(futures), total=len(futures), desc="Processing"):
            mapping.extend(future.result())

    return mapping

if __name__ == "__main__":
    xml_old_path = r"D:\UserData\Desktop\思源黑体.xml"
    xml_cx_path = r"D:\UserData\Desktop\chaoxing_font.xml"

    result = build_mapping_parallel(xml_old_path, xml_cx_path)

    # 输出到文件
    with open("glyph_mapping_parallel.json", "w", encoding="utf-8") as f:
        json.dump(result, f, ensure_ascii=False, indent=4)

    # 打印部分结果
    print(json.dumps(result[:5], ensure_ascii=False, indent=4))

这样处理时间来到了半小时(不过cpu要满了),因为我要求把大于0.9的数据全弄出来了,所以会有很多重复的字形数据。这里还需要取出相似度最高的那一个字形数据。

import json

# 读取保存的结果文件并生成包含所有相似度最高数据的 high.json 文件
def find_most_similar_for_all(result_file="glyph_mapping_parallel.json", output_file="high.json"):
    # 读取 JSON 数据
    with open(result_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    # 用于存储每个 chaoxing 对应的最相似的 si_yuan 对照项
    highest_similarity_entries = {}

    # 遍历所有条目,找出每个 chaoxing 字符对应的最相似的 si_yuan 对照项
    for entry in data:
        cx_name = entry["chaoxing"]["cx_name"]
        similarity = entry["similarity"]

        # 如果该 cx_name 没有出现过,或者当前相似度更高,更新最相似的条目
        if cx_name not in highest_similarity_entries or similarity > highest_similarity_entries[cx_name]["similarity"]:
            highest_similarity_entries[cx_name] = entry


    # print(len(highest_similarity_entries))
    # 将结果保存到 high.json 文件
    with open(output_file, "w", encoding="utf-8") as f:
        json.dump(list(highest_similarity_entries.values()), f, ensure_ascii=False, indent=4)

    print(f"已将结果保存到 {output_file}")

# 调用函数,生成 high.json 文件
find_most_similar_for_all()

至此,我们以及彻底完成了映射表的制作。然后拿数据跑一下进行测试

import json


# 读取 high.json 文件并加载数据
def load_high_json(file_path="high.json"):
    with open(file_path, "r", encoding="utf-8") as f:
        return json.load(f)


# 根据 high.json 匹配字符串中的每个字符,返回结果字符串
def match_string_with_high_json(code, high_json_data):
    result = []

    for char in code:
        # 遍历 high.json 中的所有项,查找匹配的 cx_character
        matched = False
        for entry in high_json_data:
            if entry["chaoxing"]["cx_character"] == char:
                # 根据需要将匹配的结果拼接成字符串
                result.append(entry["si_yuan"]["sy_character"])  # 使用 si_yuan 对应的字符
                matched = True
                break

        if not matched:
            # 如果没有找到匹配的项,保留原字符
            result.append(char)

    # 将匹配结果列表合并成一个字符串
    return ''.join(result)


# 示例字符串
code = '下埂关于“好好埃生”的埄埆哪埇不埁准埅?'

# 加载 high.json 数据
high_json_data = load_high_json()

# 匹配字符串
result_string = match_string_with_high_json(code, high_json_data)
print(f'超星字体:{code}')
print(f'思源字体:{result_string}')

得出结果

超星字体:下埂关于“好好埃生”的埄埆哪埇不埁准埅?
思源字体:下⾯关于“好好先生”的描述哪项不太准确?

好的,已经可以了,这里关于超星字体的时候,有个疑问就是为什么每个页面加载页面的字体,不能拿到全部的,我这个不知道咋弄,很困扰我,希望有大佬可以帮忙解释一下。

至此,文章彻底结束。

参考文章:

关于超星学习通网页版字体加密分析 :https://www.52pojie.cn/thread-1631357-4-1.html

从学习通复制文字乱码看前端版权保护:https://5ime.cn/xxt_font.html

最后修改:2024 年 11 月 30 日
如果觉得我的文章对你有用,请随意赞赏